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Growth Models

Sequences and 
Population Sequences

Sequences
In mathematics the word sequence has a very specific 
meaning: 

A sequence is an infinite, ordered list of numbers.
In principle, the numbers can be any type of number: 
positive, negative, zero, rational, or irrational. 

Sequences

The individual numbers in a sequence are called 
the terms of the sequence.

(also referred to as elements or members)

Sequences

The simplest way to describe a sequence is using a 
list format—start writing the terms of the sequence, 
in order, separated by commas. 

The list, however, is infinite, so at some point one 
has to stop writing. At that point, a “. . .” is added 
as a symbolic way of saying “and so on.”

For lack of a better term, we will call this the infinite 
list description of the sequence.

Sequences
How many terms should we write at the front end 
before we appeal to the “. . .”?

This is a subjective decision, but the idea is to write 
enough terms so that a reasonable third party 
looking at the sequence can figure out how the 
sequence continues. 

No matter what we do, the “. . .” is always a leap 
of faith, and we should strive to make that leap as 
small as possible. Some sequences become clear 
with four or five terms, others take more.

Example: How Many Terms are 
Enough?
Consider the sequence that starts with 1, 2, 4, 8, 16, 
32, . . . . 

We could have continued writing down terms, but 
it seems reasonable to assume that at this point 
most people would agree that the sequence 
continues with 64, 128, . . . .

The leap of faith here is small.
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Example: How Many Terms are 
Enough?
Consider the sequence that starts with 3, 5, 7, . . . . 
Are there enough terms here so that we can figure 
out what comes next? 

A good guess is that the sequence continues with 
9, 11, 13, . . . but this is not the only reasonable 
guess. 

Perhaps the sequence is intending to describe the 
odd prime numbers, and in that case the next 
three terms of the sequence would be 11, 13, 17, . . 
. .

Population Sequences

For the rest of this chapter we will focus on special 
types of sequences called population sequences. 

For starters, let’s clarify the meaning of the word 
population. 

In its original meaning, the word refers to human 
populations (the Latin root of the word is populus, 
which means “people”) but over time the scope of 
the word has been expanded to apply to many 
other “things”—animals, bacteria, viruses, Web 
sites, plastic bags, money, etc. 

Population Sequences
The main characteristic shared by all these “things”
is that their quantities change over time, and to 
track the ebb and flow of these changes we use a 
population sequence.

A population sequence describes the size of a 
population as it changes over time, measured in 
discrete time intervals. 

A population sequence starts with an initial 
population (you have to start somewhere), and it is 
customary to think of the start as time zero.

Population Sequences
The size of the population at time zero is the first 
term of the population sequence. After some time 
goes by (it may be years, hours, seconds, or even 
nanoseconds), there is a “change” in the 
population—up, down, or it may even  stay 
unchanged. 

We call this change a transition, and the 
population after the first transition is the first 
generation.

Sequence Notation
The main lesson to be drawn from the example is 
that describing a sequence using an infinite list is 
simple and convenient, but it doesn’t work all that 
well with the more exotic sequences. 

Are there other ways? Yes. 

Before we get to them, we introduce some useful 
notation for sequences

Sequence Notation
A generic sequence can be written in infinite list 
form as

A1, A2, A3, A4, A5, . . .

The A is a variable representing a symbolic name 
for the sequence. 

Each term of the sequence is described by the 
sequence name and a numerical subscript that 
represents the position of the term in the sequence.
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Sequence Notation
You may think of the subscript as the “address” of 
the term. 

This notation makes it possible to conveniently 
describe any term by its position in the sequence: 
A10 represents the 10th term, A100 represents the 100th 
term, and AN represents a term in a generic position
N in the sequence.

Sequence Notation
The aforementioned notation makes it possible to 
describe some sequences by just giving an explicit 
formula for the generic Nth term of the sequence. 

That formula then is used with N = 1 for the first 
term, N = 2 for the second term, and so on.

Population 
Growth Model

The Linear 
Growth Model

Linear Growth

A population grows according to a linear growth 
model if in each generation the population 
changes by a constant amount. 

When a population grows according to a linear 
growth model, that population grows linearly, and 
the population sequence is called an arithmetic 
sequence. 

Linear Growth

Linear growth and arithmetic sequences go hand 
in hand, but they are not synonymous. 

Linear growth is a term we use to describe a 
special type of population growth, while an 
arithmetic sequence is an abstract concept that 
describes a special type of number sequence.

Example: How Much Garbage 
Can We Take?

The city of Cleansburg is considering a new law 
that would restrict the monthly amount of garbage 
allowed to be dumped in the local landfill to a 
maximum of 120 tons a month. 

There is a concern among local officials that unless 
this restriction on dumping is imposed, the landfill 
will reach its maximum capacity of 20,000 tons in a 
few years.
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Example: How Much Garbage 
Can We Take?

Currently, there are 8000 tons of garbage in the 
landfill. 

Suppose the law is passed right now, and the landfill 
collects the maximum allowed (120 tons) of garbage 
each month from here on. 

(a)How much garbage will there be in the landfill 
five years from now? 

(a)How long would it take the landfill to reach its 
maximum capacity of 20,000 tons?

Example: How Much Garbage 
Can We Take?

We can answer these questions by modeling the 
amount of garbage in the landfill as a population 
that grows according to a linear growth model. 

A very simple way to think of the growth of the 
garbage population is the following:

Start with an initial population of P0 = 8000 tons 
and each month add 120 tons to whatever 
the garbage population was in the previous 
month.

Example: How Much Garbage 
Can We Take?

This formulation gives the recursive formula
PN = PN-1 + 120, with P0 = 8000 to get things started. 

The figure illustrates the first few terms of the 
population sequence based on the recursive 
formula.

Example: How Much Garbage 
Can We Take?

For the purposes of answering the questions posed 
at the start of this example, the recursive formula is 
not particularly convenient. 

Five years, for example, equals 60 months, and we 
would prefer to find the value of P60 without having 
to compute the first 59 terms in the sequence.

Example: How Much Garbage 
Can We Take?

We can get a nice explicit formula for the growth of 
the garbage population using a slightly different 
interpretation: 

In any given month N, the amount of garbage 
in the landfill equals the original 8000 tons plus 
120 tons for each month that has passed. 

This formulation gives the explicit formula PN = 8000 + 
120 * N.

Example: How Much Garbage 
Can We Take?

The figure illustrates the growth of the population 
viewed in terms of the explicit formula.
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Example: How Much Garbage 
Can We Take?

The explicit formula PN = 8000 + 120 * N will allow us to 
quickly answer the two questions raised at the start 
of the example. 

(a) After five years (60 months), the garbage 
population in the landfill is given by P60 = 8000 
+ 120 * 60 = 8000 + 7200 = 15,200. 

(b) If X represents the month the landfill reaches its 
maximum capacity of 20,000, then 20,000 = 
8000 + 120X. 

Example: How Much Garbage 
Can We Take?

Solving for X gives X = 100 months. The landfill will be 
maxed out 8 years and 4 months from now.

Example: How Much Garbage 
Can We Take?

The line graph in shows the projections for the 
garbage population in the landfill until the landfill 
reaches its maximum capacity. 

Example: How Much Garbage 
Can We Take?

Not surprisingly, the line graph forms a straight line. 
This is always true in a linear growth model (and the 
reason for the name linear)—the growth of the 
population follows a straight line.

The Arithmetic Sum Formula

Suppose you are given an arithmetic sequence—
say, 5, 8, 11, 14, 17, . . .—and you are asked to add a 
few of its terms. 

How would you do it? 

When it’s just a very few, you would probably just 
add them term by term: 5 + 8 + 11 + 14 +…, but what 
if you were asked to add lots of terms—say the first 
500 terms—of the sequence?

The Arithmetic Sum Formula

Adding 500 numbers, even with a calculator, does 
not seem like a very enticing idea. 

Fortunately, there is a nice trick that allows us to 
easily add any number of consecutive terms in any 
arithmetic sequence. 

Before giving the general formula, let’s see the trick 
in action.
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Example: Adding the first 500 terms of 
5, 8, 11, 14, . . .
Since a population sequence starts with P0, the first 
500 terms are P0, P1, P2, . . . , P499. 

In the particular case of the sequence 5, 8, 11, 14, 
17, . . . we have P0 = 5, d = 3, and P499 = 5 + 3 * 499 = 
1502.

The sum we want to find is
S = 5 + 8 + 11 +…+ 1496 + 1499 + 1502.

Example: Adding the first 500 terms of 
5, 8, 11, 14, . . .
Now here comes the trick: (1) write the sum in the 
normal way, (2) below the first sum, write the sum 
again but do it backwards (and make sure 
the+signs are lined up), (3) add the columns, term 
by term. 

In our case, we get
(1) S = 5 + 8 + 11 +…+ 1496 + 1499 + 1502.
(2) S = 1502 + 1499 + 1496 +….+ 11 + 8 + 5.
(3) 2S = 1507 + 1507 + 1507 +….+ 1507 + 1507 + 

1507.

Example: Adding the first 500 terms of 
5, 8, 11, 14, . . .
The key is that what happened in (3) is no 
coincidence. In each column we get the same 
number: 

1507 = 5 + 1502 = (starting term) +( ending 
term). Rewriting (3) as 2S = 500 * 1507 and 
solving for S gives the sum we want: S =  
(1507 * 500)/2 = 376,750.

Example: Adding the first 500 terms of 
5, 8, 11, 14, . . .
We will now generalize the trick we used in the 
preceding example. In the solution S = (1507 * 
500)/2 the 1507 represents the sum of the starting 
and ending terms, the 500 represents the number 
of terms being added, and the 2 is just a 2. 

The generalization of this observation gives the 
arithmetic sum formula.

The Arithmetic Sum Formula

Informally, the arithmetic sum formula says to find 
the sum of consecutive terms of an arithmetic 
sequence, first add the first and the last terms of 
the sum, multiply the result by the number of terms 
being added, and divide by two.
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Population 
Growth Model

The Logistic 
Growth Model

The Logistic Growth Model

One of the key tenets of population biology is the 
idea that there is an inverse relation between the 
growth rate of a population and its density.

Small populations have plenty of room to spread 
out and grow, and thus their growth rates tend to 
be high.

As the population density increases, however, 
there is less room to grow and there is more 
competition for resources—the growth rate tends 
to taper off.

The Logistic Growth Model

Sometimes the population density is so high that 
resources become scarce or depleted, leading to 
negative population growth or even to extinction.

The effects of population density on growth rates 
were studied in the 1950s by behavioral 
psychologist John B. Calhoun.

The Logistic Growth Model

Calhoun’s now classic studies showed that when 
rats were placed in a closed environment, their 
behavior and growth rates were normal as long as 
the rats were not too crowded. 

When their environment became too crowded, 
the rats started to exhibit abnormal behaviors, such 
as infertility and cannibalism, which effectively put 
a brake on the rats’ growth rate. 

In extreme cases, the entire rat population 
became extinct.

The Logistic Growth Model

Calhoun’s experiments with rats are but one 
classic illustration of the general principle that a 
population’s growth rate is negatively impacted 
by the population’s density.

This principle is particularly important in cases in 
which the population is confined to a limited 
environment. 

Population biologists call such an environment the 
habitat.

The Logistic Growth Model

The habitat might be a cage (as in Calhoun’s rat 
experiments), a lake (for a population of fish), a 
garden (for a population of snails), and, of course, 
Earth itself (everyone’s habitat).

In 1838, the Belgian mathematician Pierre François 
Verhulst proposed a mathematical model of 
population growth for species living within a fixed 
habitat. 

Verhulst called his model the logistic growth model.
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The Logistic Growth Model

Every biological population living in a confined 
habitat has a natural intergenerational growth rate 
that we call the growth parameter of that 
population. 

The Logistic Growth Model

The growth parameter of a population depends on 
the kind of species that makes up the population 
and the nature of its habitat—a population of 
beetles in a garden has a different growth 
parameter than a population of gorillas in the 
rainforest, and a population of gorillas in the 
rainforest has a different growth parameter than a 
population of gorillas in a zoo.

The Logistic Growth Model

Given a specific species and a specific habitat 
for that species, we will assume the growth 
parameter is a constant we will denote by r.

The Logistic Growth Model

The actual growth rate of a specific population 
living in a specific habitat depends not just on 
the growth parameter r (otherwise we would 
have an exponential growth model) but also on 
the amount of “elbow room” available for the 
population to grow (a variable that changes 
from generation to generation).

The Logistic Growth Model

When the population is small (relative to the size of 
the habitat) and there is plenty of elbow room for 
the population to grow, the growth rate is roughly 
equal to the growth rate is roughly equal to the 
growth parameter r and the population grows 
more or less exponentially, as shown by the figure 
on the next slide.

The Logistic Growth Model
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The Logistic Growth Model

As the population gets bigger and there is less space for the 
population to grow, the growth rate gets proportionally 
smaller.

The Logistic Growth Model

Sometimes there is a switch to negative growth, and the 
population starts decreasing for a few generations to
get back to a more sustainable level.

Example: A Stable Equilibrium

Fish farming is big business these days, so you 
decide to give it a try. 

You have access to a large, natural pond in which 
you plan to set up a rainbow trout hatchery. 

The carrying capacity of the pond is C = 10,000 fish, 
and the growth parameter of this type of rainbow 
trout is r = 2.5. 

Example: A Stable Equilibrium

We will use the logistic equation to model the 
growth of the fish population in your pond.

You start by seeding the pond with an initial 
population of 2000 rainbow trout (i.e., 20% of the 
pond’s carrying capacity, or p0 = 0.2).

Example: A Stable Equilibrium

After the first year (trout have an annual hatching 
season) the population is given by 

p1 = r(1 - p0) p0 = 2.5 * (1 - 0.2) * (0.2) = 0.4

The population of the pond has doubled, and 
things are looking good!

Example: A Stable Equilibrium

Unfortunately, most of the fish are small fry and not 
ready to be sent to market. 

After the second year the population of the pond 
is given by

p2 = 2.5 * (1 - 0.4) * (0.4) = 0.6
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Example: A Stable Equilibrium

The population is no longer doubling, but the 
hatchery is still doing well. 

You are looking forward to even better yields after 
the third year. 

But on the third year you get a big surprise:
p3 = 2.5 * (1 - 0.6) * (0.6) = 0.6

Example: A Stable Equilibrium

Stubbornly, you wait for better luck the next year, but
p4 = 2.5 * (1 - 0.6) * (0.6) = 0.6

From the second year on, the hatchery is stuck at 60% 
of the pond capacity— nothing is going to change 
unless external forces come into play. 

We describe this situation as one in which the 
population is at a stable equilibrium.

Example: A Stable Equilibrium

This figure shows a line graph of the pond’s fish 
population for the first four years. Population 

Growth Model

The Exponential 
Growth Model

The Exponential Growth Model

Before we start a full discussion of exponential 
growth, we need to spend a little time explaining 
the mathematical meaning of the term growth 
rate. 

In this chapter we will focus on growth rates as they 
apply to population models, but the concept 
applies to many other situations besides 
populations. 

The Exponential Growth Model

In the next chapter, for example, we will discuss 
growth rates again, but in the context of money 
and finance.

When the size of a population “grows” from some 
value X to some new value Y, we want to describe 
the growth in relative terms, so that the growth in 
going from X = 2 to Y = 4 is the same as the growth 
in going from X = 50 to Y = 100.
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Growth Rate

The growth rate r of a population as it changes 
from an initial value X (the baseline) to a new value 
Y (the end-value) is given by the ratio r = (Y – X)/X . 

(Note: It is customary to express growth rates in 
terms of percentages, so, as a final step, r is 
converted to a percent.)

Growth Rate

One important thing to keep in mind about the 
definition of growth rate is that it is not symmetric—
the growth rate when the baseline is X and the 
endvalue is Y is very different from the growth rate 
when the baseline is Y and the end-value is X.

Example: The Spread of an Epidemic

In their early stages, infectious diseases such as HIV 
or the swine flu spread following an exponential 
growth model— each infected individual infects 
roughly the same number of healthy individuals 
over a given period of time. 

Formally, this translates into the recursive formula PN

= (1 + r)PN-1 where PN denotes the number of 
infected individuals in the population at time N and 
r denotes the growth rate of the infection.

Example: The Spread of an Epidemic

Every epidemic starts with an original group of 
infected individuals called “population zero.”

Let’s consider an epidemic in which “population 
zero” consists of just one infected individual (P0 = 1) 
and such that, on average, each infected 
individual transmits the disease to one healthy 
individual each month.

Example: The Spread of an Epidemic

This means that every month the number of 
infected individuals doubles and the growth rate is 
r = 1 = 100%. 

Under this model the number of infected 
individuals N months after the start of the epidemic 
is given by PN = 2N.

Example: The Spread of an Epidemic

The figure shows the growth of the epidemic during 
its first year. 

By the end of the first year 
the number of infected
individuals is 
P12 = 212 = 4096. 

That’s not too bad.
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But suppose that no vaccines are found to slow 
down the epidemic and the growth rate for 
infected individuals 
continues at 100% 
per month. At the
end of the second 
year the number 
of infected 
individuals would
equal P24 = 224 = 16,777,216.

Example: The Spread of an Epidemic

Eight months after that the number of infected 
individuals would equal P32 = 232  4.3 billion (more 
than half of the world’s population); one month 
later every person on the planet would be 
infected.

Example: The Spread of an Epidemic

The Exponential Growth Model

The previous example illustrates what happens 
when exponential growth continues unchecked, 
and why, when modeling epidemics, exponential 
growth is a realistic model for a while, but there 
must be a point in time where the rate of infection 
has to level off and the model must change. 

Otherwise, the human race would have been 
wiped out many times over.

Geometric Sum Formula

P0  RP0  R2P0 ... RN1P0 
RN1 P0

R1


