

Topics this Chapter

Simple Interest

▼ Simple Interest Formula

The simple interest formula is

$$I = Prt$$

Compound Interest

▼ Compound Amount Formula

The compound amount formula is

$$A = P\bigg(1 + \frac{r}{n}\bigg)^{nt}$$

Present Value

▼ Present Value Formula

The present value formula is

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}}$$

Credit Cards

▼ Average Daily Balance

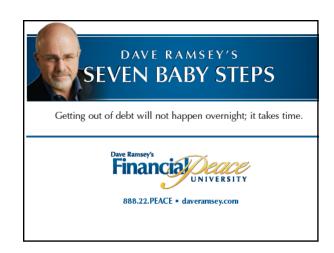
 $Average \ daily \ balance = \frac{sum \ of \ the \ total \ amounts \ owed \ each \ day \ of \ the \ month}{number \ of \ days \ in \ the \ billing \ period}$

Consumer Loans: Calculating Monthly Payments

▼ Payment Formula for an APR Loan

The payment for a loan based on APR is given by

$$PMT = A \left(\frac{\frac{r}{n}}{1 - \left(1 + \frac{r}{n}\right)^{-nt}} \right)$$


Mortgages & Ongoing Expenses

▼ Mortgage Payment Formula

The mortgage payment for a mortgage is given by

$$PMT = A \left(\frac{\frac{r}{n}}{1 - \left(1 + \frac{r}{n}\right)^{-nt}} \right)$$

step 1:	\$1,000 In An Emergency Fund
step 2:	Pay Off All Debt With The Debt Snowball
step 3:	3 To 6 Months Expenses In Savings
step 4:	Invest 15% Of Income Into Roth IRAs And Pre-Tax Retirement Plans
step 5:	College Funding
step 6:	Pay Off Your Home Early
step 7:	Build Wealth And Give!

Simple Interest: I = PrtI = Interest earned. Principal: 800 2000 5000 500 Annual % Rate: 6.00 8.00 12.00 15.00 # of Years: 10 25 1 50 640 6000 37500 Simple Interest: 30 530 1440 8000 42500 Total:

Calculate simple interest due on a 3-month loan of \$2000 if the interest rate is 6.5%.

$$P = 2000 \qquad I = Prt$$

$$r = 6.5\% = 0.065$$

$$t = \frac{3 \text{ months}}{1 \text{ year}} = \frac{3 \text{ months}}{12 \text{ months}} = \frac{3}{12}$$

$$I = 2000(0.065) \left(\frac{3}{12}\right) = 32.5$$

Simple interest due is \$32.50.

Simple Interest t

Exact method:
$$t = \frac{\text{number of days}}{365}$$

Ordinary method:
$$t = \frac{\text{number of days}}{360}$$

The ordinary method is used by most businesses. Therefore, unless otherwise stated, the ordinary method will be used.

Calculate the simple interest due on a 45-day loan of \$3500 if the annual interest rate is 8%.

$$I = Pri$$

$$P = 3500, r = 8\% = 0.08, t = \frac{\text{number of days}}{360} = \frac{45}{360}$$

$$I = 3500(0.08) \left(\frac{45}{360}\right) = 35$$

The simple interest due is \$35.

▼ Future Value or Maturity Value Formula for Simple Interest

The future or maturity value formula for simple interest is

$$A = P + I$$

where A is the amount after the interest, I, has been added to the principal, P.

- So when you borrow money, the total amount to be repaid to the lender is the sum of the principal and interest.
- Maturity Value: For Loans
 A is the total amount to be repaid to the lender
- Future Value: For Investments

 A is the total amount on deposit after the interest earned has been added to the principal.

Calculate the maturity value of a simple interest, 8-month loan of \$8000 if the interest rate is 9.75%.

$$I = Prt$$

Step 1: Find the interest.

$$P = 8000, r = 9.75\% = 0.0975, t = \frac{8}{12}$$

$$I = 8000(0.0975) \left(\frac{8}{12}\right) = 520$$

•Step 2: Find the maturity value. A = P + IP = 8000 and I = 520 into the formula.

$$A = 8000 + 520 = 8520$$

The maturity value of the loan is \$8520.

The maturity value of a 3-month loan of \$4000 is \$4085. What is the simple interest rate?

•First find the amount of interest paid.

$$A = P + I$$

 $I = A - P = 4085 - 4000 = 85$

•Find simple interest rate by solving I = Prt for r

$$7 = Prt 85 = 4000(r) \left(\frac{3}{12}\right) 85 = 1000r$$

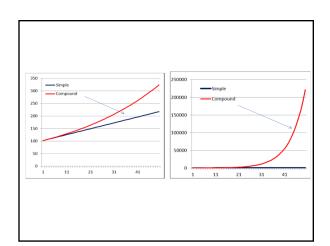
The simple interest rate on the loan is 8.5%.

Compound Interest:	A = P	$\left(1+\frac{r}{n}\right)^{nt}$
--------------------	-------	-----------------------------------

• A = Amount of money accumulated, including interest.

	- · · · · · · · · · · · · · · · · · · ·		,		0
• P=	Principal:	500	800	2000	5000
• r=	Annual % Rate:	6.00	8.00	12.00	15.00
• t =	# of Years:	1	10	25	50
• n =	Compounded (Times/Year):	1	1	1	1
	Total:	530.00	1,727.14	34,000.13	5,418,287.21
	Compounded (Times/Year):	12	12	12	12
	Compound Interest:	530.84	1,775.71	39,576.93	8,629,569.61

Calculate the compound amount when \$10,000 is deposited in an account earning 8% interest, compounded semiannually, for 4 years.


• P = 10,000, r = 8% = 0.08, n = 2, t = 4

$$A = P\left(1 + \frac{r}{n}\right)^{n} = 10,000\left(1 + \frac{0.08}{2}\right)^{2.4}$$

$$A = 10,000(1 + 0.04)^8 = 10,000(1.04)^8$$

$$A \approx 10,000(1.368569) \approx 13,685.69$$

The compound amount after 4 years is approximately \$13,685.69.

Present value is used to determine how much money must be invested today in order for an investment to have a specific value at a future date.

▼ Present Value Formula

The present value formula is

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^n}$$

where P is the original principal invested, A is the compound amount, r is the annual interest rate, n is the number of compounding periods per year, and t is the number of years.

How much money should be invested in an account that earns 8% interest, compounded quarterly, in order to have \$30,000 in 5 years?

•
$$A = 30,000$$
, $r = 8\% = 0.08$, $n = 4$, $t = 5$

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} = \frac{30,000}{\left(1 + \frac{0.08}{4}\right)^{4.5}} = \frac{30,000}{1.02^{20}}$$

$$P \approx \frac{30,000}{1.485947396} \approx 20,189.14$$

\$20,189.14 should be invested in the account in order to have \$30,000 in 5 years.

Inflation - increases in costs of goods & services.

- •Example: Your annual salary today = \$35,000.
- •In 20 years, what salary will have the same purchasing power with a 6% inflation rate?

$$A = P\left(1 + \frac{r}{r}\right)^n$$

The inflation rate is an annual rate, so n = 1.

$$A = 35,000 \left(1 + \frac{0.06}{1} \right)^{1.20} = 35,000(1.06)^{20} \approx 35,000(3.20713547)$$
$$A \approx 112,249.74$$

You need to earn an annual salary of approximately \$112,249.74 in order to have the same purchasing power.

Inflation

- •The present value formula can be used to determine the effect of inflation on the future purchasing power of a given amount of money.
- •Substitute the inflation rate for the interest rate in the present value formula. The compounding period is 1 year. Again we will assume a constant rate of inflation.

Calculate the Effect of Inflation on Future Purchasing Power

Suppose you purchase an insurance policy in 2015 that will provide you with \$250,000 when you retire in 2050. Assuming an annual inflation rate of 8%, what will be the purchasing power of the \$250,000 in 2050?

Use the present value formula.

A = 250,000, r = 8% = 0.08, t = 35, annual rate, so n = 1.

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} = \frac{250,000}{\left(1 + \frac{0.08}{1}\right)^{1.35}} = \frac{250,000}{(1 + 0.08)^{35}} \approx \frac{250,000}{14.785344}$$

Assuming an annual inflation rate of 8%, the purchasing power of \$250,000 will be about \$16,908.64 in 2050.

Effective Interest Rate

- •When interest is compounded, the annual rate of interest is called the nominal rate.
- •The **effective rate** is the simple interest rate that would yield the same amount of interest after 1
- •When a bank advertises a "7% annual interest rate compounded daily and yielding 7.25%," the nominal interest rate is 7% and the effective rate is 7.25%.

Calculate the Effective Interest Rate

A credit union offers a certificate of deposit at an annual interest rate of 3%, compounded monthly. Find the effective rate. Round to the nearest hundredth of a percent.

Use the compound amount formula to find the future value of \$100 after 1 year.

$$P = 100, r = 3\% = 0.03, n = 12, t = 1$$

$$A = P\left(1 + \frac{r}{n}\right)^{nt} = 100\left(1 + \frac{0.03}{12}\right)^{12 - 1} \approx 103.04$$

$$I = A - P = 103.04 - 100 = 3.04$$

The effective interest rate is 3.04%.

Effective Interest Rate

To compare two investments or loan agreements, we could calculate the effective annual rate of each. However, a shorter method involves comparing the compound amounts of each. Because the value of

$$\left(1+\frac{r}{n}\right)^n$$

is the compound amount of \$1, we can compare the value of

$$\left(1+\frac{r}{n}\right)^{nt}$$

for each alternative.

Compare Annual Yields

One bank advertises an interest rate of 5.5%, compounded quarterly, on a certificate of deposit. Another bank advertises an interest rate of 5.25%, compounded monthly. Which investment has the higher annual yield?

Calculate
$$\left(1 + \frac{r}{n}\right)^{n}$$
 for each investment.

Calculate
$$\left(1 + \frac{r}{n}\right)^{nr}$$
 for each investment.
 $\left(1 + \frac{r}{n}\right)^{nr} = \left(1 + \frac{0.055}{4}\right)^{4 \cdot 1}$ $\left(1 + \frac{r}{n}\right)^{nr} = \left(1 + \frac{0.0525}{12}\right)^{12 \cdot 1}$
 ≈ 1.0561448 ≈ 1.0537819

An investment of 5.5% compounded quarterly has a higher annual yield than an investment that earns 5.25% compounded monthly.